
AD-Ai33 264 CLASSIFYING BUGS IS A TRICKY BUSINESSIU) YALE UNIV NEW 1/
HAVEN CT DEPT OF COMPUTER SCIENCE W LJOHNSON ET AL
AUG 83 YALEU/CSD/BB-284 NOUG 4-82 IT 0714

UNLSIFIDD/G9/ N

E1EhEEEEI.7

ILE' 1&2.2
k ~ILO

iiiii 11 IL1.8

J1L25 .411 111 _6___

MICROCOPY RESOLUTION TEST CHART

NATIONAL DURBAU OF S1ANDtO&R)II-1113-A

' i

W~)
-a-

TVERIA

CLASSIFYING BUGS IS A TRICKY BUSINESS

W. Lewis Johnson. Stephen Drap r
and Elliot Soloway

YaleU/CSD/RR #284

August 1983

r' OCT n

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

ri.s d ,,. .i t4- 83 100gi 092-"- "- 4 'o- .. ':83 10 04 J

i~ ~ ~~Li • , I I , , , I

CLASSIFYING BUGS IS A TRICKY BUSINESS

W. Lewis Johnson. Stephen Draper
and Elliot Soloway

YaleU/CSD/RR #284

August 1083

SECURIT' CLA SSifCAtO T P OFI RAGE fU'h.. Data Entered)

REPORT DOCUMENTATION PAGE REDISRCIN

I EOTUMBER VTA~s60 noT5CTZG%69f

#284 A-0iNA33 oy
a. TITLI (and S.biaaie) S. YPE OF REPORT II PERIOD COVERED

Classifying Bugs is a Tricky Business Technical
6. PERFORMING *"a. REPORT "UNDER

7- AUTHON(a S. CONTRACT on GRANT MuNDER()

W. Lewis Johnson, Stephen Draper and N00014-82-K-0714
Elliot Soloway

9PERFORMING ORGANIZATION NAME AND ADDRESS A0 PORAM ELEOMNT PROMECTTAS

Department of Computer Science AE I OKUI UBR

Yale University
New Haven, CT 06520 NR 154-492

I* CONTOIIO,.ING OFFICE NAME ANC ADDRESS 12. REPORT DAT2

Personnel and Training Research Programs August 1983
Office of Naval Research (Code 458) 13. NUMDER OfPAGES

Arlington, VA 22217 17
14 Meop.1ORING AGENCY NAME &ADRESS(it differentif horn Controlling Office) IS. SECURITY CLASS. (of this eport)

unclassified
154. OECL £55I 1 ICATION, DOWN GRADING

SCH EDULIE

16 DISTRiouTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 OISRUFtiglON STATEMENT tat the abstrt entered in Block 20. II aff.,it how Repent)

14 SUPPLEMENrARY NOTES

7th Annual NASA/Goddard Workshop on Software Engineering,
Baltimore, 1982.

IS KEY WORDS (Contjnu. anfavSor&* eid# If flc@Owy and Idenftt by Weetk anm ,)

Software Engineering
Program Bugs
Program Understanding
Programming Plans

20 AGSTRACT (CaflttmOn -01- ide if II ncs.. Old 16E*lttP 67 Wleek umbeM)

see attached page

DD, 1473 EDITION or I NOV, SB IS OSSOLETE
S N 0102- LF- 01- 6601 SECURITY CLASIVICAIWOP orTull PASE M%4 bC~oo I

RuITV CLASaIuCrATION OF TNIS PASS t'i Doeh s XISMOl

In order to build a computer-based programming tutor for novice programmers, 0'
-wa-iAeded to first classify the bugs we found in their programs on the basis
of type and frequency. However, the enterprise of class.. ication turns out
to be a complicated process. While one may want to be able to simply use
features in the program itself as the basis for the classification, it turns
out that such a scheme will result in classifications that seem to miss the
mark, i.e., the classifications will not tell you what misconception the

1,prorammer was operating under which caused the bug. To remedy this situation
-iie arguae that the programming plans that the programmer intended to use
should be the basis for a classification scheme. Thus, a bug c!ossification
must take the programmer directly into acc.ount. In this paper, te compare
several different methods of bug classification currently being v.sed in
software engineering projects, and show their weaknesses; while 0ir'method
of using intended programming plans is not without problems, -e-ergiie that
it presents a better alternative than the other methods currently being
employed.

Accession
For

-
!T

P17TC T '

iN 0102. F. L014.6601

92CURIy CLAIIATIONCor TNi PAIDSGrU1 ll. *I ibewo

To Appear: 7th Annual NASA/Goddard Workshop on Software Engineering, Baltimore, 1982.

Classifying Bugs is a Tricky Business

W. Lewis Johnson'

Stephen Draper*
Elliot Soloway*

Department of Computer Science
Yale University
P.O. Box 2158

New Haven, Connecticut 06520

• Institute for Cognitive Science
University of California, San Diego Mail Code COS

La Jolla, California

This work was co-sponsored by the Personnel and Training Research Groups, Psychological
Sciences Division, Office of Naval Research and the Army Research Institute for the Behavioral
and Social Sciences, Contract No. N00014-82-K-0714, Contract Authority Identification Number.
Nr 154-492. Approved for public release; distribution unlimited. Reproduction in whole or part is
permitted for any purpose of the United States Government.

Johnson, Draper, Soloway Page 2

1. Context: Motivation and Goals
About 2 years ago we decided to build a computer-based programming tutor to help students

learn to program in Pascal; we wanted the system to identify the nen-.pntactic bugs in a

student's program and tutor the student with respect to the misconceptions that might have

given rise to the bugs. The emphasis was on the system understanding what the student did and

did not understand; we felt that simply telling the student that there was a bug in line 14 was

not sufficient -- since oftentimes the bug in line 14 was really caused by a whole series of

conceptual errors that could not be localized to a specific line in the program. However, in order

to design the system we needed to know what bugs students did make in their programs and

what misconceptions they typically labored under. On the basis of bug types found in a number
of pencil-and- paper studies with student programmers (novices, intermediates, and advanced)

[9, 10), we built and classroom tested a first version of such a programming tutor [11]. In the

process of testing that system we instrumented the operating system on a CYBER 175 to

automatically collect a copy of each syntactically correct program the student programmers

attempted to execute while sitting at the terminal; we call this form of data "on-line protocols".

We collected such protocols on 204 students for an entire semester (7 programming assignments).

We have systematically analyzed only a small portion of these data: the basis for this paper is

the hand analysis of the first syntactically correct program that students generated for their first

looping assignment,' i.e., 204 programs.

The story we tell in this paper deals with our experiences in analyzing these 204 on-line

protocols. In particular, we will describe the observations we made in trying to build a bug

classification scheme; the actual details of what bugs we found, their frequency, etc. can be found

in [51. The key observation is the following: while one might think that building a classification

scheme for the bugs would be straightforward, it turns out not to be so simple; in fact, we will

argue that:

Bugs cannot be uniquely described on the basi. of features of the buggy program alone; one

must also take the programmera* intentions and know.ledge st ate into accunt.

2. A Slmplifed Example
Consider the problem statement in Figure 1, which is a simplified version of the first looping4 problem that the students in our study had to solve in Pascal. From a novice's perspective the

difficult part of this problem is making sure that the negative inputs are filtered out before they
are processed. There are two common approaches to solving this type of problem in an Algol-like

language such as Pascal. In Figure 2 we depict a solution in which a negative input causes

1This problem is given in Figure 8, which will be discuused in action 4.

Johnson, Draper, Soloway Page 3

execution of one branch of a conditional, while a non-negative input caues execution of the

major computation of the loop. We call this type of structure a Sksp-uad P1611:2 a

conditional statement is used to guard the main computation from illegal valuse. Notice that one

pass through the loop will be made for each input value. The second approach is given in Figure

3; here an embedded loop filters out the illegal values. Notice that one pms through the outside

loop will be made for each - and only each - legal value. We call the nestedl loop structure an

Embedded Flter Loop Plan.

Write a program that reads in integers, that represent the daily rainfall in the New Haven area.
and computes the average dafly rainfall for the input values. If the input is a negative number, do
not count this value in the average, and prompt tb. use to input another, legal value. Stop
reading when 9990 is input; this is a sentinel value and should mot be used is the average
calculation.

Figure 1: Simplified Looping Problem

READ(RAINFALL)
WHILE RAINFALL 0 99M 00

BEGIN
IF RAINFALL < 0

THEN
WRITELN('SA INPUT. TRY AGAIN')

ELSE
BEGIN

TOTAL :s TOTAL + RAINFALL;
DAYS :s DAYS + 1;

REAO(RAINFALL);

END;

Figure 3: Using a Skip-Gu~ard Plan

Now consider the buggy program in Figure 4. The problem with this program is that if the

user first types a negative input, and then types the sentinel value 99M9, this value will4 - incorrectly - be processed as a legitimate value. A number of questions come to mind:
1. How should we classify this bug'

2. What piece of code is to blame'

3. What mental error on the student's part might have caused this bug'

2%* [11. 3, 9lfor a more complete discussion of programming plan&.

Johnson, Draper, Soloway Page 4

READ(RAINFALL)
WHILE RAINFALL 0, 0" DO

BEGIN
WHILE RAINFALL < 0 DO

BEGIN
WRITELN('BAD INPUT. TRY AGAIN');
READ(RAINFALL)

END;
IF RAINFALL 4) 99999 THEN

BEGIN
TOTAL TOTAL + RAINFALL;
DAYS DAYS + 1;
READ(RAINFALL)

END;
END;

Figure 3: Using an Embedded FMte Loop Plan

4. Vhat piece of code should we change to make the program correct?

In order to answer these questions, however, we need to answer another one first:

What programming approach was the user trying to implement? That is, did the student intend
to implement the skip-guard plan or did he try to implement the embdded Jfter loop
plan?

Answers to the first 4 questions will be different depending on how we answer this last question.

READ(RAINFALL)

WHILE RAINFALL 0, 99999 DO
BEGIN

WHILE RAINFALL < 0 DO
BEGIN

VRITELN('BAD INPUT. TRY AGAIN');
READ(RAINFALL)

END;
TOTAL : TOTAL * RAINFALL;
DAYS : DAYS * 1;
READ(RAINFALL)

'END;

Figure 4: Sample Bugg Program

We will continue this example by presenting first an argument that supports the choice of the

skip-guard plan, and then an argument that supports the choice of the embedded filter

loop plan; we will then describe a basis for making a choice between the two competing

Johnson, Draper, Soloway Page 5

positions. Consider, then, Figure 5 in which we depict the buggy program again, plus a

generalized, template version of the asp-gvord plan. We can describe the buggy program in

terms of a difference description between the it and the generalized plan. As shown in Figure 5.
there are 3 differences:

1. need an IF instead of a WHILE inside the loop,

2. have an extra read inside the loop,

3. will always execute the processing steps since there is no way to skip around the
processing.

The first difference is a plausible bug for a novice to make; in our examination of novice

programs we have seen novices confuse IF and WHILE: students sometimes construct a loop with

simply an IF, and sometimes they use just the test part of the WHILE statement3 12. 61.
Similarly, the second difference is also plausible for novices; again, we have found that novices

often add bits of spurious code, oftentimes attempting to mimic the redundancy they often use in

formulating plans and actions in the real world. Finally, if we assume that the programmer

really meant to simply test RAINFALL, then all that is missing is an ELSE to cause the skip

around the computation; novices notoriously have trouble with the ELSE parts of conditionals.

Thus, the buggy code in Figure 5 is not that different from the skip-guard plsa; w.hen

considering differences from only this plan it is entirely conceivable that the novice

programmer was trying to implement this plan in his code.

Now consider Figure 6 in which we again depict the buggy program. This time, however, we

show differences between it and a generalized, template version of an embedded filter loop

plan. Notice that the code matches the plan well; the only bug is a missing guard before the

code that processes the input: the running total update and the counter update must be

protected from including a sentinel value in the computation.

The analysis in Figures 5 and 5 would lead to different answers to the first 4 questions above.

For example, if we believe that the analysis in Figure 5 is correct, we might say the following to

the student: 4

It seems that you are haying some trouble with conditional statements. For example, did you
realize that there exists a statement called IF that allows you to test ..

To correct your program, you might wast to add an ELSE clause...

2While this may moem strange to us u expert programmer. if we take a moment to reflect, we can uee that using
WKILE rot a conditional and a loop, and IF for only the conditional part is somewhat arbitrary, given their meanings
in English.

4We do not want to argue about the beet pedagogial strasw for interacting with the student; that in itself me a
very difficult question. The particular response shown in simply meant to illustrate one type of response to this
situation.

Johnson, Draper, Soloway Page 6

READ(RAINFALL)
WHILE RAINFALL (99"9 DO Skip-Guerd Ran

BEGIN
WHILE RAINFALL < 0 DO IF x < fin

BEGIN THEN
WRITELN(*BAD INPUT. TRY AGAIN'); BEGIN
READ(RAINFALL) print error message

END; END
TOTAL S TOTAL * RAINFALL; ELSE
DAYS DAYS * 1; BEGIN
READ(RAINFALL) process input

END; END

BUG DESCRIPTION:

1. need an IF instead of a WHILE
2. have an extra READ in inner loop
3. missing ELSE; processing of Input

will never be skipped

Figure 6: Bug Description Assuming Skip-Guard Plan

Moreover, we would classify the bugs as an (1) incorrect statement type, (2) spurious read, (3)

missing ELSE. On the other hand, if we believe that the analysis in Figure 6 is correct, then we

might say something like the following to the student:

You should notice if the sentinel value follows the input of a negative value that your program
will compute an incorrect average.

The bug type then might be a missing guard (conditional) plan.

By this time the reader's intuition is surely saying that the correct analysis of the buggy

program in Figure 4 is that the programmer intended to implement an embedded filter loop

plan. The bug counts (3 for the skip-guard plan and 1 for the embedded filter loop
plan) provide quantitative eupport for this decision. However, we feel that the key in the

decision process -- and the basis for our intuition - is our underetanding of the student's

program provided by the plan analysis in Figure 5: thus, the bug categorization and bug count

follow from our understanding of the program - and not the other way around. We purposely

choose an example over which there would be little controversy. However, the point was (1) to

show how much reasoning we often do about programs implicitly, and (2) to show how different

bug categorization and bug counts could be u a function of choice of intended underlying plan.

While the above decision was relatively clear, let us perturb the buggy code a bit further and

Johnson, Draper, Soloway Page 7

READ(RAINFALL) Embedded alter Loop Plan
WHILE RAINFALL <> 99999 DO

BEGIN WHIZE < in DO
WHILE RAINFALL < 0 DO BEGIN

BEGIN print error message
WRITELN('BAD INPUT, TRY AGAIN'); READ x
READ(RAINFALL) END

END; sentinel guard plan
TOTAL : TOTAL * RAINFALL; process input
DAYS DAYS * 1;
READ (RAINFALL)

END;

BUG DESCRIPTION:

1. missing conditional (guard) on
processing the input

Figure 6S Bug Description Assuming Embedded Ailter Loop Plan

see how murky these type of decisions can - and do - become. In Figure 7 we show three

buggy program fragments; let us compare the bug categorization and bug counts using the two

-rnative plans for each of the programs.

e Figure 7 a

Using the embedded filter loop plan we get the following bug differences:

1. the WHILE and IF keywords have been interchanged

2. there is a missing read for a new value

3. there is a missing guard on the subsequent input processing

s, Using the ekip-guard plan we get the following bug differences:

S1. missing ELSE on the internal IF

0 Figure 7b

o Using the embedded filter loop plas we get the following bug differences:

1. the WHILE ad IF keywords have been interchanged

2. there is a mising guard on the subsequent input prcesig

P Using the skip-guard plan we get the following bug differences:

1. spurious READ

2. missing ELSE on the internal IF

Johnson, Draper, Soloway Page 8

*Figure 7c

Using the embedded filter loop plan we get the following bug differences:

1. missing read for a new value

2. there is a missing guard on the subsequent input processing

Using the ship-guard planswe get the following bug differences:

1. the WHILE and IF key-words have been interchanged

2. missing ELSE on the internal IF

We would argue that the programmer of the code in Figure 7a intended to encode a

skip-guard plan: again, the bug counts (3 for the embedded filter loop plan and 1 for the

skip-guard plan) support the intuition that it is more plausible that the programmer simply

left out an ELSE, as opposed to swapping keywords, etc. However, the code in Figures 7b and c

are not so easily analyzed: the bug counts are the same and the plausibility of the bug types are

reasonably similar. In order to make a reasoned decision we need to bring other evidence from

the program to bear. For example, in Figure 7b the programmer used a WHILE loop to correctly

implement the outer loop; this is some evidence that he understancdi. how and when to use this
construct. Thus, we might be confident that the programmer really meant IF in the program in

Figure 7b. On the other hand, the inclusion of the spurious READ is unsettling. However, the
program in Figure 7c is certainly the most problematic: the bug counts are the same, the

plausibility of the bugs are similar, and the additional outside information is equivocal. The

moral of this program is that it can be exceedingly difficult to make decisions about plans -- and

bugs --by simply looking at the code.

The point of these latter examples is to illustrate how quickly the decision about what the

programmer intended gets murky, and how additional information outside the buggy area needs

to be brought to bear. We see again that for the programs in Figure 7 the bug categorization

and bug frequencies change depending on what decision is made about the programmer's

intention.

Finally, the fact that the programs we have shown are notices' programs is really irrelevant to

the point in question: the problem is that the intention of the programmer effects the hug

categorization and the bug count. Quite reasonably, we would not expect a professiona

programmer to mistake an IF for a WHILE. The observation that we would not expect this

particular confusion would in fact aid us in inferring the intention - it would not, we believe,

simply make the problem go away. In fact, we might well see buggy code such as Figure 4,

Figure 7 from a professional programmer.

Johnson, Draper, Soloway Page 9

a b

REAC(RAINFAL.) IEAO (RAINALL)
WHILE RAINFALL -o 999B DO WHILE RAINFALL 9o W"1 DO

BEGIN BGIN
IF RAINFALL < 0 TWEN IF RAINFALL C 0 THEN

WRITELNPCAD INPJT TRY AGAIN') BEGIN
TOTAL * TOTAL * RAINFALL IITELN('0 INPUT TI GAIN')
DAYS -OATS • I EAD(AINFALL).

(EAOAINALL) OW
END TOTAL - TOTAL * RAINFALL.

OAYS -OAYS * I
READ(RAINFALL)

END

READ(RAINFALL)
WILE RAINFALL "I DO9t 0

BEGIN
WHILE RAINFALL ' 0 00

vITEL('IAD IOW TRY AGAIN).
TOTAL - TOTAL - RAINFALL.
DAYS * DAYS • 1.
REAG(RAINFALL)

END

Figure 7: Clouding the Waters: Additional Buggy Programs

* 3. Methods for Specifying the Intention of a Program

In the above section, the basis for describing bugs was the difference between a program and

the programming plans that specified a correct program. There are other methods of specifying

the intention of a program:

* 1/0 Behavior

* Programming Plans

* Corrected Version of the Buggy Program

* Program Description Language (PDL)

In what follows we will examine each of these in turn, and explore their good points and the bad

points with respect to using a method as a basis for developing bug difference descriptions.

1/O BEHAVIOR

An I/0 specification for the problem in Figure 1 would be quite close to the problem statement

itself. The obvious problem with this method is its vagueness with respect to the code: many

different code fragments can misbehave in the same manner (e.g., there we many, many ways to

generating an infinite loop -- but the 1/O result is the same in all cases). One needs to be able

to make finer-grain distinctions than are facilitated by a comparison of the code to simply 1/0

Johnson, Draper, Soloway Page 10

specifications.

PROGRAMMING PLANS

The major problem with this method is the need to guess what plan the programmer intended

to implement. However, once the decision is made, then describing the bug as a difference

between the plan and the code is relatively easy. One method of coping with the plan decision

problem is interviews with the original programmers; this technique has been used to "validate"

change report data in several software monitoring projects (e.g., 1121). Unfortunately, in a class
of 200 students writing code at different terminals, interviews with subjects is a bit more

difficult.

The major benefit derived from building a bug description using this method is an accurate

reporting of the cause of the bug. That is, clearly the goal of a bug taxonomy in which one

captures bug type and bug frequency is the ability to pinpoint the sources of the bugs: one

would like to know which bugs came from misunderstandings of the specifications document and

which bugs arose from coding errors, etc. For example, in the previous section if we assumed

that the programmer intended to implement a skip-guard plarn then we would say that there

were a number of coding level bugs (e.g., WHILE instead of IF, missing ELSE, spurious READ).

However, if we assume that the programmer intended to implement an embedded filter loop

pln then the source of the bug may be a problem of specification interprtation: the

programmer may not have thought that someone would ever input the sentinel value after

inputing an illegal (negative) value. Thus he felt no need to guard subsequent computation. (An

interview with the programmer would be particularly useful in this specific case.) Thus, bug

categorization and bug origin is directly influenced by the choice of underlying plan structure in

the buggy program.

CORRECTED VERSION OF THE BUGGY PROGRAM

The typical method of describing a bug is to compare the original buggy program with the

corrected version of that program (e.g., [12, 7, 11). While there is no guessing as to the intention

of the original programmer, we see 2 basic problems with this approach:

e 7Te choice of the particular corrected program used as the measure ie relatively
arbitrary. That is, there are few hard guidelines for making changes to code. Thus,
different program mersa could well take the same buggy program and correct it in
different ways. This would result in two different bug descriptions - an intuitively
unsatisfactory situation. Moreover, different bug descriptions could lead to different
conclusions as to the origins of the bugs, which, afterall, is the the point of doing the
bug categorization in the first place. For example, if the buggy program in Figure
4 were corrected by implementing a Akip-guard plan, then the difference between
the buggy program and the corrected program would result in a bug description
containing 3 coding level bugs. On the other hand, if the program is corrected by
putting in aguard around the subsequent computation to protect against a sentinel
value, then the bug description would only contain I bug, a missing conditional

Johnson, Draper, Soloway Page 11

(guard plan) - which may or may not be a coding level bug (as discussed above).
While we might prefer the programmer to make the latter change, there is no way to
guarentee this situation.

Interviewing the original programmer might shed some light on his intentions -- and
guide the subsequent bug analysis or even bug correction. However, this additional,
programmer-supplied, information goes beyond the corrected program - and
approaches a bug description based on the programmere orginal plani While we have
some methodological reservations about using interviews collected after the fact, 5 the
main issue is that information gotten from the interview is of a different sort than the
information gotten from the corrected program - where the former information is
much more akin to the programming plans described above.

a 7sat is actually counted can be quite problematic. For example, if we correct the
buggy program in Figure 7c by adding the missing ELSE, we also need to add a
BEGIN-END block around the running total update and the counter update. Should
we count this as 1 bug or 2 bugs? It seems unfair to count the BEGIN-END block
against the programmer, since this change is required by the 'real* change. On the
other hand, however, in the next section we will show programs in which the 'real"
bug ie a missing BEGIN-END block. Thus, it is not inconceivable that a programmer
could add the ELSE in Figure 7c, but forget to put in the now necessary BEGIN-END
block. What one counts is a tricky issue.

The upshot of these two problems with categorizing and counting bugs based on a corrected

version of the program was suggested above: one is less confident of the origins of the bugs, and

thus is less confident about percentages of bugs with those origins. Depending on the particular

corrected solution and the particular choice of counting scheme, one could paint a picture of a

program that contained many more coding level errors, say, than specification-based errors. The

worst part of this situation is that we would not have a good way of knowing how right or wrong

this analysis was - since we don't know how the bug categories and counts would have turned

out if a different corrected version were used as the basis for difference descriptions.

PROGRAM DESCRIPTION LANGUAGE (PDL)

PDL's come in all flavors; some are very close to the code, while others are more high level,

and closer to the plan level description. The former PDL would suffer from the same problems as

using a corrected version as the standard. The latter type of PDL would suffer from the problems

associated with using the programming plans as the standard.

1

'The problems with using interview data has received significant attention in psychology. For example, Eriesson
and Simon (41 have argued that one can reliably only we verbal information given by the subject as the en hset is
doinp ta 9"kh. They argue that sch a concurrent verbal report is effectively an on-line dump troi short-term
memory. In contrast, a report after the fact could be a story about what the subject thought be was thinking, and
that significant distortions can occur in this type of situation. While one might arguably feel that the Eriesson and
Simon pooition is a bit extreme, nonetheleu, it seems only prudent to exercise eare in interpreting interview data.

Johnson, Draper, Soloway Page 12

4. An Extended Example
Let us now consider an actual example from the on-line protocol data. In Figure 8 we depict

the problem the students were trying to solve; in Figure 9 the program on the left is a buggy

program generated by a student in our study. If we take a "local view" of the bugs in this

program, we can generate a corrected version as shown in Figure 9 (right hand side). Notice that

if we do a difference description between the corrected and the buggy versions we can come up

with 8 changes:

9 The rainyday counter, COUNTI, will be always be updated; in order to correct for
the times when a negative rainfall is input, we need to decrement COUNTI. Thus, [1]
added a begin-end block after (NUM < 0) test, and [21 added a decrement of the
rainyday counter.

9 COUNT2 must be made to contain the number of rainy (not just valid) days.
COUNT2 keeps track of the non-rainy valid days in the loop. Thus, we need to
subtract the non-rainy days (COUNT2) from the total valid days (COUNTI) in order
to get the number of rainy days: (3J changed addition of COUNTI and COUNT2 to
subtraction of COUNAT from COUNTI.

* The guard on the average calculation is incorrect. Thus, [41 changed guard on average
calculation to COUNTI.

* The divisor in the average calculation should be the valid day counter, COUNTI, not
the valid, but non-rainy day counter, COUNT2. Thus, [5] changed COUNT2 to
COUNTZ in the divisor of the average calculation.

a If there is no valid input the program should neither calculate the average, nor should
the program print it out -- as well as not printing out the maximum. Thus, [S] added
a begin-end block after division guard around average calculation and output
statements.

* The WRITELNs give a message about what should be output; in order to make the
message agree with the actual output, the variables need to be changed: [7] the valid
day counter needs to be COUNTI, while the [8] rainy day counter needs to COU?%T72.

Given the number of changes that need to be made to the counters (COUNTI and COUNT2), it

would appear that the student has some confusion over the roles of the two counters.

The Noah Problem: Noah needs to keep track of the rainfall is the New Haves are to determine
when to launch his ark. Write a program which he can use to do this. Your program should read
the rainfall for each day, stopping when Noah types "9999, which is not a data value, but a
sentinel indicating the end of input. If the user types in a negatp-e value the program should
reject it, since negative rainfall is not possible. Your program should print out the number of
valid days typed in. the number of rainy days, the average rainfall per day over the period, and
the maximum amount of rainfall that fell on any one day.

Figure 6: The Noah Problem: A First Looping Problem

However, consider now a different corrected version of this buggy program as depicted in

Figure 10. A difference description between the buggy version and the corrected version yields the

following set of bugs:

9 We can make COUNTI only keep track of the rainy days; this is consistent with code

Johnson, Draper, Soloway Page 13

DUCCGY EXAMIPM cosauRanS VWSoN
KGPI EGIN

WAITILN ('PLEASE~ I IU MOM? OF RAINFALL') WITELM ('PLASI INPU 111111? OF RAINALL)11
R ADLIN 111 101111
READ(ALIP) OMAll(111A.U
COUN?1 - 0 MI '0
COUNT2 - 0 CNW2 s0
SIR *O so '0
"I~es - 0 NI~. 0.
WHIL[(VIA < SENTINAL1) 00 NILE IRAS 0- SENIRAL) 00

EGIN RGIN
IF (FMie 0) IF (No ' 0)

ATi4N TNN

C2PSTI COUT'. CMXTI 'COAT I
I F (NIR H IGOWP IF (11110 WIWM
?WE%~ THEN

SIF (MR 0)

MAY.'* C"AT2 CDLN?? - COANT? - I
:F X" 01 If (AMM 0)

T1HE.4 TiNE
WRITELN ('.ILLEGAL !IPUT INPUT NEW VALUE*)11111t (do thee list)

QEAD% cmi uemalE* ; (owt ikeh~i.)
REN ul IIIWTELN ('ILLEGAL INPUT IPUT NEW VALUE')

CONT CONT2 - COU1TI READL11
IF ("N a 0) ftAS(tap)

TwfN Eo
*OTAL - SUP/COUNT7 mut =mm - audit (ehpd ue@ (hie 0)
WRITELN ('AVERAGE RAINFALL WAS TOTAL *IKCHE PER DAY-) IF Cttl 3 0)w (6ut w 0)
HRITELN CH"IOIIST RAINFALL WAS NIG~ * INCHES') THEN

WRITELN (,^"jT2 VALID DAYS WERE ENTERED) be- (*sod this thu.)
VPIIEL% (COUNT? RAINY DAYS IN THIS PERIOD ITOTAL StP/inmtZ. to how~d &UP fine 0)

WRITELN ('AVERAGE RAINFALL WAS TOTR INCHES PER DAT1
VRITELN (HNIGHEST RAINFALL WAS HIGWTIM INPCHES*

VRITEL(Gatt VALID DAYS WERE ENTERED') (at e ahs how~ 0)
k*ITELNI(Imt. RAINY DAYS IN THIS PERIOD (dimpd thee howi

* (11 added a beg5aCed block after (111A 4 0) test. Rod 12 added a decremnt of the ratoyday counter

a 131 c.4angeo add tioR of COUNITi sod COUNT2 to subtraction of COUNT? from COATI

is 141 Clanged guard oH average CalcH latioH to COANTI

*e i changeo COUN'? to COUNTI a the divisor of the aversge CsIcelatlee

0 ill added a begHf-end block after ,HiStoo guard around swerage calculation sod output statemeets
is t(lJ Te va' day C-)vnter needs to be COUNIT) wklse 1 1 r ainy day counter needs to COUNT?

Figure 0: A Buggy Pogram and a Corrected Veision

Johnson, Draper, Soloway Page 14

already in the program: the line that adds COUNT2 and COUNTI now makes sense
-- COUNT2 now keeps track of the valid days, and the divisor in the average
calculation suggests that COUNT2 should be the valid day counter. In order to make
COUNTI perform in this manner, we need to [1) add a begin-end pair around all
computation after NUM. > 0 test, up to the NUM " 0 test.

9 If there is no valid input the program should neither calculate the average, nor should
the program print it out - as well as not printing out the maximum. Thus, we need
to [2] add a begin-end block after division guard around average calculation and
output statements.

e The guard on the average calculation is incorrect. Thus, [33 changed guard on average
calculation to COUNTI.

Which description should we choose? And why! Notice that neither of the corrected versions

were that unreasonable. However, it would seem to us that one should choose the second bug

description over the first. The basis for that decision is the hypothesized plan structure

underlying the buggy version: it appears to us that the student was trying to structure the

actions in the main loop in terms of case. For example, the program explicitly tested for NUM
> 0, NUM - 0, and NUM < 0 and took the appropriate actions -- almost. In order to make
the case structure work, the code following the NUM > 0 up to the NUM - 0 test should be

grouped together. While one cannot put too much faith in the indentation of a novice's

program, 6 it appears that the indentation supports this analysis. Thu, what is missing from the
main loop is a begin-end pair surrounding the code between the NUM > 0 test and the NUM-

o test. On this analysis, the student does not have a misunderstanding surrounding the two

counters, but rather has a coding level misunderstanding about how to block code together.

Moreover, this same misunderstanding can explain the lack of a begin-end pair surrounding the

average calculation in the next two write statements. The reduced bug count in the second

description follows directly from this analysis: in effect there awe only 3 bugs in this program, 2

of which have the same underlying origin.

This example illustrates a point made earlier. the bug categorization and bug count follow.

from an understanding of the program that is provided by tke hypothesized plan structure of

the program. That is. to understand a buggy program, one must make inferences about what

plan structure the programmer intended to implement; the program only *makes sense" in terms

of these plan descriptions.

$We have observ~ed in the on-line protocols that the physical layout of a student's program suffers U the student
makes changes to his program in the procss of debugging it.

Johnson, Draper. Soloway Page 15

BEGIN BGYZA P BEGIN N T =CI W DVZ m

WRKTELN ('PLEASE' KMPUIT AURT OF RAINFALL') WITEIM ('PLEASEI IIDPJT MOT OF MVRAKWML*)
READLN PEAK",
RAALP1READ(MM ALIN)
COi4TI 0 cUT1 a 0
COUAIT2 0 COIWdI - 0,

WIKLE (WIN a, SENTKNAL) DO WHILE (010443 SONIKAL) DO

IF (AA 0) IF (m 2 0
TWEN TNEe

c~jNTI - cowl I RX K mm *i. WAR
IF (FILM ' IGURM) CA6TI =CmOTI * I

THEN KF (NURHM WM
HKONP - WIN TUEN

.r (11101 - 0) WIr~A * M
THENk ASI. (ad" #A" be. e)
CMAT2) -COWM2. -I If (KIN xO)

KF (41.1M 0) THENl
TWE N CMLRT2 w COLIET2*I

WRITELN ('ILLEGAL XNFLJT INPUT NEW WALLS') KF (111011 c 0)

AMINOM) ITELIN K TILMAL INPUT KmpJt NEW WALL)

COJET? * CMT2 * Coil~l REAIAII)
KF (AIl 0) END
TWE'E COL2 - C~itW2 - CG.*T)
'OTAL S 9J/CCIA3T2 IF (M W). 0) fO mkp tso ..)

WRITELAI (AVERAGE RAINFALL WAS TOTAL -IES PEN DAY-) THEM

WRI11TELNS (HK4GMEST RINFtALL VAS PIWRALI I 1NESI 64.. aud tame $.)
WRI'EI.N (CKIJET2 VALKD DAYS WERE ENTERED-) ?OTAL - SUVCOMT2
IKITEJE (COUNTI RAINY DAYS KN TmKS PERIOD PWITELMN (AVERAGE RAINFALL. WAS TOSAL. INCHES PER DAY2

EPIC VNITELIN (W101OEST RAKNFALL VAS *I~MAM INCHES
0" (Is ae kne)
gITELOO (OM2 VALKD DAYS WKR ENTERED)
W~AKI (OAffI NAdKM DAYS KM THIS PERIOD

0 111 add a beg."-end pair afrrovd all Compgtatioa after Mis b 0 oSt vp to Lb.SM 0 tent

* 121 add a beg-ft-esd bloCk after diviSie. 5gard &roved average CalColation sod ovtpvL StatementS

* jai Cheaned gosard oH average caIcuIALIOR to COW?)J

Figure 10: A Bugggy Progam an an Alternative Cormeted Version

Johnson, Draper, Soloway Page 16

S. Concluding Remarks
We have argued that a bug description is a difference description between the realization and

the intention specification. We have presented a number of techniques for specifying the intention

and have pointed out the problems associated with each type of specification in developing an
accurate picture of bug types and bug frequency. While no technique is without its problems, we

have argued that the understanding provided by a plan analysis of the buggy program stands a

better chance, as compared to the other techniques, of providing a more accurate categorization

and count of the bugs - and thus a more accurate reflection of the origins of the bugs.

I

Johnson, Draper, Soloway Page 17

Reference.

I. Basili, V., Perricone, B. Software Errors and Complexity: An Empirical Investigation. Tech.
Rept. TR-1 196, University of Maryland, Dept. of Computer Science, 1962.

3. Boua, J. Understanding the Novice Programmer. Dissertation, in preparation.

3. Ehrlich, K., Soloway, E. An Empirical Investigation of the Tacit Plan Knowledge in
Programming. in Human Factors in Computer Systems , J. Thomas and M.L. Schneider (Eds.).
Ablex Inc., in press.

4. Ericsson, A. and Simon, H. "Verbal reports as data." Pschoogcal Review 87(1980),
215-251.

S. Johnson, L., Draper, S., Soloway, E. The Nature of Bugs in Novices' Pascal Programs. in
preparation

6. Miller, L. A. "Natural Language Programming: Styles, Strategies, and Contrasts." IBMf
Sysems Journal .00(1981), 184-215.

7. Ostrand, T., Weyuker, E. Col'.,cting and Categorizing Software Error Data in an Industrial
Environment. Tech. Rept. 47, New York University, Dept. of Coimputer Science, 1982.

6. Rich, C. Inspection Methods in Programming. Tech. Rept. AI-TR-804, MIT Al Lab, 1981.

9. Soloway. E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About
Programming? In A. Badre, B. Shaciderman, Ed., Direction#e in Humn-~aComputer Int eractiosoe,
Ablex, Inc., 1982.

10. Soloway, E., Bonar, J., Ehrlich, K. . Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, in press.

11. Soloway, E., Rubin, E., Woolf, B., Bonar, J., Johnson, L. MENO-11: An Intelligent
Programming Tutor. Journal of Computer-Based Instruction, to appear.

12. Weiss, D. Evaluating Software Development By Analysis of Change Data. Tech. Rept.
TR- 120, University of Maryland, Dept. of Computer Science, 1981.

- OFFICIAL DISTIRUBTION LIST -

Aray Privat Sector

Technical Dect.or I copy Or Michael G..eseretb 1 copy

U S Army Research Institate for the Department of Cooputer Science
Behavioral &ad Social Sciqecs Sutefordi University
5001 Eisenhower Avenue Stanford. California 34305
Aleziadre1 Virginia 22333

Dr. Dadra Geataer I copy
"r James Baker I copy bolt Beriesn I %ihese
Army Resetrch InStitute 10 Moulton Street
5001 Eisenhoe, Avienue Cambridge, Plssachilsett 02136
A;IeIaoria. Vigtii'a 22333

Or Robert Glbser I copy
Dr B. trice J Parr I copy Lsrning Research & Development Ceter

U S Army Research Institute Unsversity of Pittsbrgk
5001 Eisenhower Avenie 3939 O'Mara Street
Alonledri Virginia 22333 Pottstibrgh. P lesylvtIeia 15260

D- Mt, Ite S Nat: 1 copy Or Joseph Gogeen I copy

1l as Tockbica| Arel SRI International
U S Army Restore,. lnstitate 333 Rvensiwood Avenue
$001 Eseloer Aveiue MeNlo Path. California 34025
Alexandria. Virginia 22333

Dr Bert Gres I copy
.e Ni'Shall Norwo I copy Jos$ Nopkins University

S Army AeSvarc insti tto for the Oepartment of Psychology
Gflavioral A Social Sciences Charles A 34th Street
!101 Eisenhower Ave.iue laltimore. Maryland 21218

Ailiandrin. Virginia 22333

C~ Ote4 ' Quei. Sr I copy Oi' Jane 0 tteio I copy
D;rector T-a inng Research Lab LROC
Arst Researep Institute University of Pittsbargh

50.i E-senhoner Avenue 3939 O'Mara Street
Ailein*.oa Vrgts 2-2333 Pittsborgh. PePsylvania 15213

Comemader. US Army Research Instittte 1 copy

fel the Behavor$l A Social Sciences Dr Brbarn Hayes-Roth 1 Copy
Attn PER!-BR (Dr .udith Oresln,) Department of Computer Science

iCVl Eisenhower Ave-,e Stanford Uiversity

Alzandris Virginia 22333 Stanford. California 65305

Joseph Pso.ka. Ph D I copy Dr Frederick Noyes-Roth I copy
Attfn PEIN-IC Telouledge

Army Research Instit'te 525 University Avenue

$001 Eisenhower Avenve Polo Alto, California 94301
Alelnandrin. Virginia 22333

Glann Grteeld. Ed
Dr Robert Sasmor I copy Mhenn Intelligence Newsletter I copy
U S Army Research, InSi ttt for the P 0 Goo 1163

4 Behavior; and Social Sciences Birmingham. Michigan 46012
5001 Esenhower Avenne

Alsandria. Virginia 22333 Or Earl HNt. I copyI Dpartmset of Psychology
Or Robert wisher I copy Uiversity of Vashligtoo
Army R*seares Isitate Seattle. Wasnlogtol 99103

5001 iseshower Avete
Alesnadria. Virginia 22333 Or Marcel Jost I copy

Department of Psyckology
Ciregoe-velloe University
Pittsbersk. Peasylvanie 15213

Air Force

U S At; Force Office of Scientific I copy
Researca Or David Kieras I copy
Life Sciences Directorate. III Department of Psychology
selilng air Force last University of Arizona
walshagton. K 2033 T ame.. Aizon 5721

Or (art A Allaest 1 cool or alter Kistsci cool
NQ AFNIL (AFSC) Department, of Paycoology
Brooks APB. loans 7M35 University of Colorado

loude*r. Colorado 80302
Bryan DaolIaIw1 copy
AFIRL/LRT Df Stephen Kosslyn I copy
Lowry ASS, Colorado 30230 Department of Psychology

The Jobs Nopkins Usiversity
Or Gmnevieve Noadded Icopy Baltimore. Maryland 21213
Program Manager
Life Scieaces Directorate Dr Pat Langley copy
AFOSA The Robotics Institutet
Boiling AFB. K 20332 Cilraigis-Mullen University

Pittsburgh. Pennsylvania 1S213
Or join Tangmey I cp
AFOSIIARL Or Jill Larkin I copy
So ing APB. K 20332 Department of Psycooogy

Carteee-M lion Uiversity
Or J s Yaisaee I copy ittsalurga. Pennsylvania 15213

Lowry AS, Colorado 30230
Or Alast Lesgold 1copy

Mlarins, Corps Lesaieg MIO Center
Um~versity of Pittsbartlh

4 Willit Sm roenp I copy 333 0 tNara Street
Eduacation Advisor (E031) Pittsbergi. Peensylvania 15213
Education Center. MCDEC
vaeties. virginia 22134 Dr Jim Loeit 1 copy

University of California
Sptc-al Assistant for Marine I copy It Sea Diego
Corps 11tters Laboratory for Comparative,
Code loom Nae Cognition - 0003A
Office of Naval Research La Jails. California 92113
80C I Qeincy Street
Arl~agton. Virginia 22217 Or Michael Levine 1 copy

Department of Edocatiolial Psychology
Or A L Slafkoshy I copy 210 Eduocation Bldg
Scientific Advisor (Code RD-I) Usiversity of 1llinois
Mo. U S Marine Corps Coampeege. Illinois 61361
Wash ingtos OC 20380

O r Marcia Lime 1 copy
Department of Defente University of Califora

Director. Adolesent Reasoning Project
Defense, Technical Information Center 12 coptiesl berheley, California 34720
Caimeron Station. lodg
Aletandris. Virgios 22314 Or Jay MClelland4 I copy
Attn TC Detnton of PsychologyMI
Military Almistast for Training and I e"py Cambridge. Maamseelsetts 62133
Permssnl Technology
Office of to* Under Secretary of Defense or JaM R Killer I copy
for Rfesarch a 9161neting Camipsea Thoegot Corporation
fosm. 30123, The Postagoa 1721 West Piano Riepeal
WsingSt". K 20301 Plan.. teea" 75075

Major Jack Thorpe 1 espy Df Math Miller copy
DARPA Cemptet Theoagt Corporation
1400 W. las, blvd 2722 vast Pias ighuey
Arlington. Virginia 22200 Plnes. le" 7&073

Navy Or Teeflirte I eopy
Ilaeo PM

Notern boers I copy 833 Coyote HIll baed
Code 17 11 Palo lso. Calafqreas 94804
Nome factors Laboratory

I~v~RE~l~cuOr Atllenebare I copy
Anusaft. Florida 23 biehawoeat Toehoogy Laboratriote

2IOU fleas Avenue. Furth Floo
Code 3711 I cpy ledoodo both. Catiforms 6617
Atta Arther S Wasve
Noelt Iraiciag fqoipeust Center Or heald Normn I eopy
Ortasdo. Florida 32013 Cogmitiv "SWaes. C-013

Ussw of Califors. See Speoe
Lasose Scientist I copy La Jolla. California M313
Office of novat Research
Brache Off ice. Looeo
Ica 36 Or JeIs Orlesky coepy
FPO low York. Neu York 03510 lastieteu for Defease Analyses

1301 1 basrgard Street
Or Richard Cantone I copy Alexandria. Virginia 22311
Navy Researcht Laboratory
Code 7510 Professor Seymour Papert I copy
Wash ingte. KC 20376 2Q- 109

NIT
Chief of laval Edocefios &ad Tressiag I copy Cuorisso. feumaceseitte 3213
Lassom Office
Air Force Massa Resource Laboratory Sr Nsey Psssaos 1Isp
Operations Tram..5g Division University of Chieap
WILLIMS API. Ar izona 65224 Gradueate School 011 lesaem

1101 E N6th Street
Chicago. 11t16048 N063

Or Stanley Cot yen I copy Dr Rickard A Pollak I espy
Office of levei Tiehuoiogy Director. Special Projects
900 1 91iscy Street NECC
Arlington. Virginia 22217 21154 Militie.. Valley Loe

SteI luatar. Nieseetae 5506
CDt mile Cora c1opy
Office of lovel R"eserc Or Peter Pota"ge copy
300 1 9aiscy Street Deparment of Psychoology
Code 270 University of Colorado
Arligtoo. Virgirnia 22217 Iselder. Colorado 66309

Or Je Ford I espy Or fred Reif I espy
levy Permoae RI Ceur Ploysim esSparteet
Sa Do*$o. Cat ifersa 12152 Univer'sity of Califoraia

Garteley. Californae 34728
Or Judle Fraski,. I espy
Code 7510 Sr Larm es oakc 3 epy,
Navy Research Laboratory LADC
Wshaagtoa. K 20175 Vaiversity of Pittelburgli

am3 Otllera Street
Dr Nsi*e Gaynor I eopy Psttuburgb. Poessylease 15223
Nacy Research Laboratory
Cede 7510 Nory S oilf 19 1 pWaba OaC 21175 Pregra. is Cogatswe ete

Coaer for Romse Zeforntie to
Sr Jie Notion I "opy Usivesrvit of Colifefe. 2607 "49
Code 24 La Jala. California I"6
Deny Peresel NIo Caster
see Deep. California 3152 Or Mileespy

Anes Ientioe"e for lseesee
gr I Noese 2my INS Tlhins Jef forge Steet. WAbay Pesase M I Coeutr PosIIGO. KC low

e Miep. Cliferes 3223

Dr Ernst Z Rotbopf I copy

Dr lorose J K.'r I copy Bell Laboratories
Chief oP Naval Tecanical Traieiag Nurray Mill. gow JerSey 07174

Naval Air Staion PleclupS (75)
Millington. Teoscssee 3054

Dr Vill$im I Names I copy
Dr James Lester I copy Georgia leostatee of Tocksology

O Detaclment School of Industreil a System
495 Summer Street Eagiseorig
bat.O. ess& cSatLS 02210 Atlsts. Georgia 30332

Or William L Naoy (02) 1 copy Dr David R11amltrt I copy
Chief of levll EsecatcOs and Treimniag Ceter for Neone Iformation Processing
lvat Ar Statoa Univfsity of California, See Diego
Peasacola Florida 32506 Ls Jolls. Clitforais M2913

Dr Jot WcLac. ac I copy Dr Michael J SSer I copy
Navy Personnel RID Ceiler Perceptronics. Ise

Sao D-ego Cal,forca 921!2 6271 Veriel Aveace
Woodliad Hills. Califotici 11364

Dr Roger Scall I COpy

Dr William Montag e I Copy Yale Umeovrslty
NFRDC Code 13 Departmaat of Cospetef Science

San Diego. Calfornia 2152 P 0 low 2156
low Iove. Cossecticat 06520

Libtrary Ci . 'O.L I copy
Navy Ptnrscrtiu I&Ca ce ter Dr Walter Sciaoder I copy

Sea Diego Calfor-. 92152 Psychology D epsruNta
603 E Dec il

*ecss,€ai Director I copy Chospi0lg. Illoaoots 6120

lvy Personnel iAo Cet.or

Sac Diego California 92152 Dr Also Sctooefold I copy
MathematiCS ais Edecatio

Comsdcg I ff cer 6 cops Tie University of Rochester

*ova; Research Laborstory Rochester. lwe York 14627

Code 62627
waSonivgon. DC 203;0 ir Colls Sheppard 1 copy

Applied Psychology Unio

Office of Navel Research I cooy Admiralty orose Tectsology Est
Code 433 Teldiagtoo. Middlesex

OC N guinty Street United 1i16o4
Arfhgtoa Virginia 22217

Dr N Wllace Siaciho 1 copy

Persomp l I Trining Research Group 6 copies Program Director

Code 442PT Iapoler Resarch sad Advisory Service

Office of lval Research Smithsonian Zastitatioa
Arlvgtoao Virgii 22217 601 north Pitt Street

Alelladria. dorgicie 22314

Office of the Che of lval Operations 1 copy
Realrcs Dovelopumet A Stedies Iravch Or Edeard E Soith 1 copy

OP 115 Del?. ftrcae A Noweca
Wvaigtoc DC 20350 50 %ttO a.rett

¢lCamridge. MessactasattaI 021331

LT Frank C Potio. Rx. USI1 (Ph)
1 copy

ClT (1-432) Or Ihaord Sam 1 copy
"A USSchool of ooidacatas

Pfesaaole. Floride 32509 Steford Uciversi?,
Steeford. California 34305

Dr Gary Pec I copy
Operavties ftesecb Developmect
Coda UIPs Or Lattryc I Spoti eopy
Navel PostgrIdweto School Psychl ogy DoporIstoa

Noaterty. allfrIlc 1340 Ioa laiversity
Provw deat. Rhode Island M2812

I,

Dr Gl Recard I copy
Code slii Dr Roert Sternberg 1 copy
ITEC . Departaest of Psychology

Orlaeno, Florida 32613 Yale Uiersity
Box IA. Yale Station

Dr Worth Sceasold I copy Now Noves. Connecticut 06520
CUE7 (1-5)
AS. Pescot. Florida 32506 Dr Albert Stevens I copy

Sait Branch A lenan
10 "otilto Street

Or Robert G Smith I copy Cambridge. assoelsetts 02238
Office of Chief of avel Operations

OP-987h David E Stome. Ph D I copy
wNasinon. DC 20350 Nozeltiae Corporaton

7680 Old Spriaghouse Road
Or Alfred F SoOde, Director I copy McLean. Virginia 22102
Trinns Analysis A Evalvation Group

Department cf the Navy Dr Patrick Snppes I copy

Orissoo. Florioda 3213 Institute for Mathematical Studies in
the Social Sciences

Dr Richard Sorensen I copy Stanford University

Navy Perscnre, RID Center Stanford, California 94305

San Diego Ca! fornia 9212
L Kihemi Tatsuoao I copy

Or rrederick Stenheiv ser I copy Coeputer Based Education Research Lab

CN0 - OPI:5 252 Engineering Research Laboratory
Navy A-net Urbona. Illiois 61601

Arl!ngton Virg:nia 20370

Dr Miaurice Ttsuok 1 copy

Roger weissilr-Saylc 1 copy 220 EducatioO Bldg

Department cf AdPinistratine Sciences 1310 S Sixth Street

laval Postgraduate School Champaign. Illinois 61820
Ponterey California 93940

Dr Perry I Thoradyhe 1 copy

"r John I i cfe I COpy Perceptroics. Ionc
Navy Persoptei AD Center 54S Middlefield Road. Suite 140

San oiego. California 92152 Menlo Park. California 94025

Or WaliaC bulloCk III copy Dr Do glas Tovne I copy
Navy Persornel RID Center University of So California

Son Diteg. Calfcali 921!2 Oevauvoral Ttchnology Labs
1645 S Elena Avenue

Prnvate Sector Redondo leach. Californ3 i 90277

Pr John R Ar.oson 1 copy or %art Van Leon 1 copy
Department of Psychology XeroI PARC

Carnegie-01eilo, University 3333 Coyote Hill Road
Pittsburgh Fennsylvania 1S213 Palo Alto. California 04304

Dr Joh- Anett 1 copy Dr Keith T Wescourt 1 copy

Department of Psychology Percoptrosics. Tnc

University of waraick 545 Middlefield Road. Suito 140

Coventry CV4 7AJ Raeio Park. California 94025
' ENIUAND

Or Michael Ateood I copy V1llin S 9i bttes I copy

ITT - Programming Sell Laboratories
1000 Oronoqee Lane 2D-610
Stratford. Coasectacat 05497 Noledel. le Jersey 07733

Dr Almo laddeley I copy Dr Mike Williams copy

Medical Research Council xeror PARC

Applied Psyciology Uit$ 3333 Coyote Hill N oa
36 Chaucer Road Polo Alto. California 94304

Cambridge C82 2fF
E[aLA¥O

Covi rai Asgeces

Dr Patricia A heler 1 copy
Or Pistne a gg I copy N IE-P% lid. Stop #I
Department of Psyciology 1200 lthb Street IW
University of Colorado Washington. C 20OO
Boulder. Colorado 60309

Dr Swsis Chipma I copy
fs Carolb A Bagley I cOpy Learmgii d evelopoest
NGmmeS t& Educatioil Caopetg s Nional lJstiete of Ellcatiow
Comsort'im 1200 loth Street 4W
2354 Hiden Villey Limo Wishingto. 20206
Stilliiter N. iesota 55062

Edwars Esty I copy
Or Joatha Sharon I copy Department of Edecitiog. 0111
e! 3t00m Avenge MS 40
Berwyn, PtnanSylnvii 12312 1200 lth Street. IV

Wish igton. K 20200
Mr Avran Srr 1 copy

tevartP nt of Coapvt.er Scieice Eduard J Fuete 1 copy
Starfold Umlve'sty Department of Education
St~ifcra Iiforvia 94305 1200 loth Street, NW

Wiasington, C 20208
Cr John Slack I copy
Yale Unverst y TAlE. TUA I copy
Sot 1!A Yale Statuci Nitleoal Institite of Edocatloi
New avev Coeiect&cvt 05.10 1200 loth Street. iw

Washeigto. DC 20206
Or Jobs S Brown I copy
XEPX Pitao Alto Research Center Or Jobe Keys I COpy
3.33 Coyote Road Naioni losti-tie of Edecatom
PIIo-Alto. Californmi 94304 1200 loth Street. IW

Washngton KC 20208
Or .'lce lvchain I copy

eczl-ment of Cosu.Vtr Sc:emce Or Arthur eImed I copy
Stialord University 724 Brows
Starford. Cai fornia 94305 U S Dept of Educatom

Viii iigod. DC 20206

Or otvo Cartorvlt I cepy

aetaptient of Psychology Dr Andrev 0 tioner I copy
Carveg-e-feloc Uiversity Office of Scientific sad Eotmeegri
Pttsbvrgh Pemssyllamsi 15213 Personnel ad Edecatlo

Istlovil Sclemce Folaitelo
Dr Pat Carpenter 1 copy Wasimgtl K 20550 -

Oe;artpvnt of Psychology
Cirnttog 1e-el lo Us~uersltV
Ptts vrgh Pessylvesis 15213 Everett PIler I copy

Researci Scientist
Or Willam Cho*e * I copy Nilb StOt 239-3
Department of Psychology NASA Anes Research Ceter
Carvegle-eliom University Moffett Fleld Callforalm 94035
Pittsvrgh Plemsylianma 15213

Or Mary Stod ard I copy
Or Nichollse Cho I copy C 10. 018i Stop C96
Leiromeg 0 I Center LOS Aleo Utiosal Laboratories
University of Pittsberg Los AIimos 11 Necico 67545
399 O'ara Street

Pttsburgh. Ptleylillii 15213 Chief. Psycholo ic¢l esesirc BrIoc I copy
U 8 Coast Gefr (-P1/21TP42)
Wash ington C 20593

Dr Willias Cleucey I copy
Departmest of Computer Scitace Dr Freak Withrou I copy
Stalford univrsity U S Office of Edecatioe
Stssfori. Califormis 94306 400 Marylead Avewm Ski

Wasiogtca. DC 20202
or hilas " douseas Icopy
Bait Bereech A *@w3. INC Dr Josepb L Tovag. Director I copy
So moattos Street Memory A Cognitive Processes
Cambridg. Massachosetts 02138 Ma1tsoa Sciesce Fomagatmee

Wash iagtoe. DC 20550

ERIC Fie-lity-Acquisitofts 1copy
4M3 Rugby Ave***S
Bethestsa Mary lad 20014

Mir Wallace Fearzeig I copy
Departmvot of Ediocatiomal Techaology
Bolt leramek and Nesome
10 o [t. Street

Cameridge Niassacftesetts 02238

or Deuter P'etc~tr Icopy
WICAT Resellrel Zaittate
1675 S State Street
Ores Utala 22333

Dr Joe. 4 Fredtfisis Icopy
Bolt Bersek A Ueman
lo oNo. 'to Street
Cambridge Plassacbesetts 02138

